\qquad
\qquad

Lesson 12.3 Volume of Prisms

Find the volume of each rectangular prism.

Volume
$=$ \qquad \times \qquad \times \qquad
$=$ \qquad in. ${ }^{3}$
2.

Volume
$=$ \qquad \times \qquad \times \qquad
$=$ \qquad cm^{3}

Example

A rectangular prism measures $5 \frac{1}{2}$ inches by 4.2 inches by $3 \frac{3}{4}$ inches.
Find the volume of the prism.

$$
\begin{aligned}
& \text { Length }=\frac{5 \frac{1}{2}}{\mathrm{in} .} \\
& \text { Width }=\frac{4.2}{3} \mathrm{in.} \\
& \text { Height }=3 \frac{3}{4} \mathrm{in.}
\end{aligned}
$$

The volume of any rectangular prism of length ℓ, width w, and height h is given by $V=\ell w h$

$$
=5 \frac{1}{2} \times 4.2 \times 3 \frac{3}{4}
$$

$$
=86 \frac{5}{8} \mathrm{in}^{3}
$$

The volume of the prism is $86 \frac{5}{8}$ cubic inches.
\qquad
3. A rectangular prism measures 8 inches by $6 \frac{1}{2}$ inches by 12 inches. What is the volume of the rectangular prism?

Length $=$ \qquad in.

Width $=$ \qquad in.

Height $=$ \qquad in.

Volume $=\ell w h$

$$
\begin{aligned}
& = \\
& \times \\
& \times \\
& = \\
& \text { in. }{ }^{3}
\end{aligned}
$$

The volume of the rectangular prism is \qquad cubic inches.
4.

5.

Name: \qquad Date: \qquad

Tell whether slices parallel to each given slice will form uniform cross sections. If not, explain why not.

Example

A cross section is any slice through a solid figure. A uniform cross section of a prism means the cross section is parallel to the base.

The slice \qquad forms \qquad a uniform cross section.
b)

The slice \qquad does not form a uniform cross section. The rectangle has different dimensions with other cuts.

The slice \qquad a uniform cross section.

7.

The slice \qquad a uniform cross section.
9.

Name: \qquad Date: \qquad

Find the volume of each prism.

Example

The prism shown has bases that are squares. The area of a base is 36 square inches. The height of the prism is 8 inches. Find the volume of the prism.

$$
\begin{aligned}
\text { Volume } & =\text { area of base } \cdot \text { height } \\
& =\frac{36}{8} \cdot \frac{8}{} \\
& =288 \mathrm{in.}^{3}
\end{aligned}
$$

The volume of the prism is 288 cubic inches.
10. The prism shown has bases that are triangles. The area of a base is 48 square centimeters. The height of the prism is 14 centimeters. Find the volume of the prism.

$$
\begin{aligned}
\text { Volume } & =\text { area of base } \cdot \text { height } \\
& =\square \cdot \\
& =\square \mathrm{cm}^{3}
\end{aligned}
$$

The volume of the prism is
\qquad cubic centimeters.
11. The prism shown has bases that are rectangles. The area of a base is 300 square feet. The height of the prism is 12 feet. Find the volume of the prism.

6. Area $=\underline{9} \times \underline{10}$

$$
=\underline{90} \mathrm{~cm}^{2}
$$

7. There are $\underline{6}$ square faces.

Area of each square face
$=\underline{20} \times \underline{20}$
$=\underline{400} \mathrm{ft}^{2}$
Surface area
$=$ number of square faces
x area of each square face
$=\underline{6} \times \underline{400}$
$=\underline{2,400} \mathrm{ft}^{2}$
The surface area of the cube is $\underline{2,400}$ square feet.
8. 1,350 square meters
9. 3,456 square centimeters
10. There are $\underline{2}$ rectangles, $A, \underline{2}$ rectangles, B, and $\underline{2}$ rectangles, C.
Area of two rectangles, A
$=\underline{2} \times \underline{3} \times \underline{2}$
$=\underline{12} \mathrm{~m}^{2}$
Area of rectangles, B and C
$=(\underline{2}+\underline{3}+\underline{2}+\underline{3}) \times \underline{6}$
$=60 \mathrm{~m}^{2}$
Surface area
$=$ total area of rectangles, A, B and C
$=\underline{12}+\underline{60}$
$=\underline{72} \mathrm{~m}^{2}$
The surface area of the prism is $\underline{72}$ square meters.
11. 262 square inches
12. 2,854 square centimeters
13. There are $\underline{3}$ rectangles and $\underline{2}$ triangles.

Area of two triangles.
$=\underline{2} \times \underline{\frac{1}{2}} \times \underline{3} \times \underline{2.6}$
$=\underline{7.8} \overline{\mathrm{~cm}^{2}}$
Area of three rectangles
$=(\underline{3}+\underline{3}+\underline{3}) \times \underline{5}$
$=\underline{45} \mathrm{~cm}^{2}$
Surface area
$=$ total area of triangles and rectangles
$=\underline{7.8}+\underline{45}$
$=\underline{52.8} \mathrm{~cm}^{2}$
The surface area of the prism is 52.8 square centimeters.
14. $1,360.5$ square meters
15. 408 square inches
16. Area of square base
$=\underline{20} \times \underline{20}$
$=\underline{400} \mathrm{ft}^{2}$

Area of four triangles
$=\underline{4} \times \underline{\frac{1}{2}} \times \underline{20} \times \underline{12}$
$=\underline{480} \overline{\mathrm{ft}^{2}}$
Surface area
$=$ total area of square base and triangles
$=\underline{400}+\underline{480}$
$=\underline{880} \mathrm{ft}^{2}$
The surface area of the pyramid is 880 square feet.
17. 224.4 square centimeters
18. 135.6 square feet
19. 424.45 square centimeters

Lesson 12.3

1. Volume
$=\underline{7} \times \underline{7} \times \underline{7}$
$=\underline{343}$ in. ${ }^{3}$
2. Volume
$=\underline{14} \times \underline{7} \times \underline{5}$
$=\underline{490} \mathrm{~cm}^{3}$
3. Length $=\underline{8}$ in.

Width $=6 \frac{1}{2} \mathrm{in}$.
Height $=\underline{12} \mathrm{in}$.
Volume $=\ell w h$

$$
\begin{aligned}
& =\underline{8} \times 6 \frac{1}{2} \times \underline{12} \\
& =\underline{624}
\end{aligned}
$$

The volume of the rectangular prism is 624 cubic inches.
4. $1,220 \frac{1}{10} \mathrm{~cm}^{3}$
5. $14 \frac{2}{9} \mathrm{~m}^{3}$
6. forms
7. does not form; The rectangle has different dimensions with other cuts.
8. The slice does not form a uniform cross section.

The triangle has different dimensions with other cuts.
9. The slice does not form a uniform cross section.

The triangle has different dimensions with other cuts.
10. Volume
$=$ area of base \cdot height
$=\underline{48} \cdot \underline{14}$
$=\underline{672} \mathrm{~cm}^{3}$
The volume of the prism is $\underline{672}$ cubic centimeters.
11. 3,600 cubic feet

